Temperature Prediction Model for a Regenerative Aluminum Smelting Furnace by a Just-in-Time Learning-Based Triple-Weighted Regularized Extreme Learning Machine
نویسندگان
چکیده
In a regenerative aluminum smelting furnace, real-time liquid temperature measurements are essential for process control. However, it is often very expensive to achieve accurate measurements. To address this issue, just-in-time learning-based triple-weighted regularized extreme learning machine (JITL-TWRELM) soft sensor modeling method proposed prediction. method, weighted JITL (WJITL) adopted updating the online local models deal with time-varying problem. Moreover, model considering both sample similarities and variable correlations was established as method. The effectiveness of demonstrated in an industrial process. results show that can meet requirements prediction accuracy furnace.
منابع مشابه
A Robust and Regularized Extreme Learning Machine
In a moment when the study of outlier robustness within Extreme Learning Machine is still in its infancy, we propose a method that combines maximization of the hidden layer’s information transmission, through Batch Intrinsic Plasticity (BIP), with robust estimation of the output weights. This method named R-ELM/BIP generates a reliable solution in the presence of corrupted data with a good gene...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملRegularized Extreme Learning Machine for Large-scale Media Content Analysis
In this paper, we propose a new regularization approach for Extreme Learning Machine-based Singlehidden Layer Feedforward Neural network training. We show that the proposed regularizer is able to weight the dimensions of the ELM space according to the importance of the network’s hidden layer weights, without imposing additional computational and memory costs in the network learning process. Thi...
متن کاملRegularized extreme learning machine for regression with missing data
This paper proposes a method which is the advanced modification of the original Extreme Learning Machine with a new tool to solve the missing data problem. It uses a cascade of L1 penalty (LARS) and L2 penalty (Tikhonov regularization) on ELM to regularize the matrix computations and hence make the MSE computation more reliable, and on the other hand, it estimates the expected pairwise distance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Processes
سال: 2022
ISSN: ['2227-9717']
DOI: https://doi.org/10.3390/pr10101972